QuantumATK Forum

QuantumATK => General Questions and Answers => Topic started by: beauyy on August 31, 2024, 03:24

Title: carrier doping concentration in 1D nanoribbon
Post by: beauyy on August 31, 2024, 03:24
Dear all,

The unit of doping concentration is e/cm3 in QuantumATK.

It is easy to be converted into e per unit, by multiplying with the height, width, and length in 3D materials. But in 1D structures, such as GN nanoribbon, there is a lot of vacuum regions in the vertical and plane direction.

Is it still useful to multiply with the height, width of unit cell, if I want to convert the unit into e/cm in 1D structure. Or should I multiply with the atomic height and he actual width of nanoribbon?

 The height of 1D nanoribbon is atomic scale, I doubt whether the doping concentration (e/cm) will be too low in 1D structure.



Title: Re: carrier doping concentration in 1D nanoribbon
Post by: Anders Blom on September 5, 2024, 21:45
Actually the doping provided to the calculation engine is always a number without a unit; the specification of a doping density is only a convenience function in the GUI, applicable to a 3D case, in which case the density is multiplied with a reference volume (typically one of the electrodes) to yield a dimensionless number.

So for a 1D or 2D case you just have to do the same - if you know the sheet or linear doping density, multiply with a reference area or length, and you get the number to input to the calculation. The cross-sectional area or height should not be included, as you noted, since it changes with the (arbitrary) amount of vacuum used.