Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Topics - Sylvan

Pages: [1]
1
Hello, I am working with VNL on a local windows machine, and running the calculations on a remote Linux cluster.
I haven't found a clear indication on how to use checkpoint files in a remote configuration.
So far, what I've tried is :
-   Create a script file specifying a local path for the checkpoint file (i.e. u’C:\User\[...]\Bi_nw\checkpointraw.hdf5’)
-   Go into the script editor and change it to an absolute path on the server (i.e. u’/W/sb255620/VNL/checkpointraw.hdf5’)
-   Create a blank “checkpoint.hdf5” file at the specified location on the server, and make it writable for all users (otherwise atk will throw an error when I start the calculation)
When I do this, the calculations finish, but once I download the result file on my local machine and try to read the band structure, I get the error shown in the picture below.
Apparently the results in the final hdf5 file are dependent on the checkpoint file.

What should I do instead ? Should I use the same file for results and checkpoint ? Or is there something to do with the I/O window in the job manager when I submit the job ?

2
General Questions and Answers / Relaxation of Bismuth
« on: July 3, 2018, 14:21 »
So, I'm trying to relax H-passivated bismuth nanowires in ATK, however doing DFT-based relaxation is quite time-consuming. Thus I've been trying to perform some ForceField based calculations, at least to get a first approximation before doing DFT iterations.

There are however no TremoloX/Brenner/EMT parameters available for bismuth and bismuth compounds. Since we can add custom potentials now, I've tried using a naive Lennard-Jones potential for Bi-Bi and Bi-H potentials. This fails and results in a massive spaghetti ball, as seen in the attached picture.

Here is my question then, for people who are more familiar with molecular dynamics: is there some more appropriate pseudopotential that would be suited for quick-but-accurate relaxation of Bi nanowires ?

Pages: [1]