21
General Questions and Answers / Re: Effective bandstructure that goes beyond quantuamatk limitation
« Last post by Anders Blom on March 25, 2025, 18:49 »1. Yes, memory, and you found the right solution - more threads rather than more MPIs per node reduces memory usage but keep the speed roughly the same, in many cases.
2. There are two guides in the manual around performance/parallelization and memory usage:
https://docs.quantumatk.com/manual/technicalnotes/parallelization/parallelization.html
https://docs.quantumatk.com/manual/technicalnotes/advanced_performance/advanced_performance.html
It's hard to give a single advice that works for all systems, but QuantumATK speeds up very well to high count of cores, and the more memory you need, the more you should rely on threading rather than MPI.
3. To me this is a very natural part of the projection algorithm, not least considering the way QuantumATK uses atomic orbitals as basis. It also provides a logical way to interpret the results. If your larger system is not really an extension of something with a smaller periodicity, the effective band structure may not be the best tool to analyze the results. The band gap for any system can always be inferred from the density of states, and the curvature is the same as the effective mass basically, which can also be computed directly for the supercell system.
2. There are two guides in the manual around performance/parallelization and memory usage:
https://docs.quantumatk.com/manual/technicalnotes/parallelization/parallelization.html
https://docs.quantumatk.com/manual/technicalnotes/advanced_performance/advanced_performance.html
It's hard to give a single advice that works for all systems, but QuantumATK speeds up very well to high count of cores, and the more memory you need, the more you should rely on threading rather than MPI.
3. To me this is a very natural part of the projection algorithm, not least considering the way QuantumATK uses atomic orbitals as basis. It also provides a logical way to interpret the results. If your larger system is not really an extension of something with a smaller periodicity, the effective band structure may not be the best tool to analyze the results. The band gap for any system can always be inferred from the density of states, and the curvature is the same as the effective mass basically, which can also be computed directly for the supercell system.