Dear Sir,
Following is my script to determine the I-V characteristic of CNT. Now I wish to determine the effect of temperature on the I-V curve .So please help me with the script for three different temperatures.My electrodes as well as the scattering regions are of armchair type.Sir I am not sending you the coordinates as they are exceeding the maximum allowed length.
from ATK.TwoProbe import *
from ATK.MPI import processIsMaster
import ivcurve
import numpy
# Generate time stamp
if processIsMaster():
import platform, time
print '#',time.ctime()
print '#',platform.node(),platform.platform()+'\n'
# Opening vnlfile
if processIsMaster(): file = VNLFile('armchair.vnl')
# Set up electrodes
electrode_configuration = PeriodicAtomConfiguration(
electrode_cell,
electrode_elements,
electrode_coordinates
)
# Set up two-probe configuration
twoprobe_configuration = TwoProbeConfiguration(
(electrode_configuration,electrode_configuration),
scattering_elements,
scattering_coordinates,
electrode_repetitions=[[1,1],[1,1]],
equivalent_atoms=([0,0],[57,196])
)
if processIsMaster(): nlPrint(twoprobe_configuration)
if processIsMaster(): file.addToSample(twoprobe_configuration, 'twoprobe_configuration')
######################################################################
# Central region parameters
######################################################################
exchange_correlation_type = LDA.PZ
iteration_mixing_parameters = iterationMixingParameters(
algorithm = IterationMixing.Pulay,
diagonal_mixing_parameter = 0.1,
quantity = IterationMixing.Hamiltonian,
history_steps = 6
)
electron_density_parameters = electronDensityParameters(
mesh_cutoff = 150.0*Rydberg
)
basis_set_parameters = basisSetParameters(
type = SingleZeta,
radial_sampling_dr = 0.001*Bohr,
energy_shift = 0.01*Rydberg,
delta_rinn = 0.8,
v0 = 40.0*Rydberg,
charge = 0.0,
split_norm = 0.15
)
iteration_control_parameters = iterationControlParameters(
tolerance = 1e-05,
criterion = IterationControl.TotalEnergy,
max_steps = 50
)
electrode_voltages = (0.0,0.0)*Volt
two_probe_algorithm_parameters = twoProbeAlgorithmParameters(
electrode_constraint = ElectrodeConstraints.Off,
initial_density_type = InitialDensityType.EquivalentBulk
)
energy_contour_integral_parameters = energyContourIntegralParameters(
circle_points = 30,
integral_lower_bound = 3*Rydberg,
fermi_line_points = 10,
fermi_function_poles = 4,
real_axis_infinitesimal = 0.01*electronVolt,
real_axis_point_density = 0.02*electronVolt
)
two_center_integral_parameters = twoCenterIntegralParameters(
cutoff = 2500.0*Rydberg,
points = 1024
)
######################################################################
# Left electrode parameters
######################################################################
left_electrode_electron_density_parameters = electronDensityParameters(
mesh_cutoff = 150.0*Rydberg
)
left_electrode_iteration_control_parameters = iterationControlParameters(
tolerance = 1e-05,
criterion = IterationControl.TotalEnergy,
max_steps = 50
)
left_electrode_brillouin_zone_integration_parameters = brillouinZoneIntegrationParameters(
monkhorst_pack_parameters = (1, 1, 500)
)
left_electrode_iteration_mixing_parameters = iterationMixingParameters(
algorithm = IterationMixing.Pulay,
diagonal_mixing_parameter = 0.1,
quantity = IterationMixing.Hamiltonian,
history_steps = 6
)
left_electrode_eigenstate_occupation_parameters = eigenstateOccupationParameters(
temperature = 300.0*Kelvin
)
######################################################################
# Collect left electrode parameters
######################################################################
left_electrode_parameters = ElectrodeParameters(
brillouin_zone_integration_parameters = left_electrode_brillouin_zone_integration_parameters,
electron_density_parameters = left_electrode_electron_density_parameters,
eigenstate_occupation_parameters = left_electrode_eigenstate_occupation_parameters,
iteration_mixing_parameters = left_electrode_iteration_mixing_parameters,
iteration_control_parameters = left_electrode_iteration_control_parameters
)
######################################################################
# Right electrode parameters
######################################################################
right_electrode_electron_density_parameters = electronDensityParameters(
mesh_cutoff = 150.0*Rydberg
)
right_electrode_iteration_control_parameters = iterationControlParameters(
tolerance = 1e-05,
criterion = IterationControl.TotalEnergy,
max_steps = 50
)
right_electrode_brillouin_zone_integration_parameters = brillouinZoneIntegrationParameters(
monkhorst_pack_parameters = (1, 1, 500)
)
right_electrode_iteration_mixing_parameters = iterationMixingParameters(
algorithm = IterationMixing.Pulay,
diagonal_mixing_parameter = 0.1,
quantity = IterationMixing.Hamiltonian,
history_steps = 6
)
right_electrode_eigenstate_occupation_parameters = eigenstateOccupationParameters(
temperature = 300.0*Kelvin
)
######################################################################
# Collect right electrode parameters
######################################################################
right_electrode_parameters = ElectrodeParameters(
brillouin_zone_integration_parameters = right_electrode_brillouin_zone_integration_parameters,
electron_density_parameters = right_electrode_electron_density_parameters,
eigenstate_occupation_parameters = right_electrode_eigenstate_occupation_parameters,
iteration_mixing_parameters = right_electrode_iteration_mixing_parameters,
iteration_control_parameters = right_electrode_iteration_control_parameters
)
######################################################################
# Initialize self-consistent field calculation
######################################################################
two_probe_method = TwoProbeMethod(
electrode_parameters = (left_electrode_parameters,right_electrode_parameters),
exchange_correlation_type = exchange_correlation_type,
iteration_mixing_parameters = iteration_mixing_parameters,
electron_density_parameters = electron_density_parameters,
basis_set_parameters = basis_set_parameters,
iteration_control_parameters = iteration_control_parameters,
energy_contour_integral_parameters = energy_contour_integral_parameters,
two_center_integral_parameters = two_center_integral_parameters,
electrode_voltages = electrode_voltages,
algorithm_parameters = two_probe_algorithm_parameters
)
if processIsMaster(): nlPrint(two_probe_method)
runtime_parameters = runtimeParameters(
verbosity_level = 10,
checkpoint_filename = 'a2.nc'
)
voltages=numpy.arange(0.0,1.1,0.2)*Volt
ivcurve.runIVcurve (
twoprobe_configuration,
two_probe_method,
runtime_parameters,
voltages,
vnl_filename='armchair.vnl', sample_name='twoprobe_configuration',
current_k_point_sampling = (1,1),
current_number_of_points = 500
)
Thanks,
NIKILA