Ok, hm, a few things.
Perhaps most important: the difference in two difference densities at two voltages IS INDEED the same as the difference in two densities at two voltages.
However, as you hinted at, the electron difference density would not integrate up to the number of electrons, I missed that point. Only the total electron density would do that. So the main purpose of the difference density is, indeed, to look at differences between different bias or gate voltages.
You don't need the total number of electrodes (or, you can't get it anyway), what you need is the change in electrons (charge, really) relative to the change in voltage. And that is properly described in this way. I think the numbers make sense also, a decent fraction of an electron (0.05-0.2) per 0.1 V or so (I assume) sounds about right.