Well, a (1,0) nanotube isn't really a nanotube (most notably, it's not a cylinder...).
Actually, in hindsight I think the VNL tube grower should not have allowed such a small number as n=1. In fact, it appears that the tube generation algorithm fails for (1,0) and (1,1) in the sense that the resulting structures are not cylinders. Moreover, while (2,0) does look like a tube, it is not really acceptable at all either.
Tubes (2,1), (2,2), (3,0) and (3,1) are passable; they are cylindrical and relatively regular. However, calculations indicate that for thermal and mechanical stability, carbon nanotubes must have a diameter above 3-4 Ångström, where the smaller radius only can be realized for tubes grown inside multi-wall nanotubes (see
PRL 92, 125502 (2004) but also Refs. 1 and 5 therein). In fact, even (4,0) and (4,1) fall below the 4 Å-diameter criterion (and (4,2) barely too), while (3,3) and (4,3) are above, and so would be possible to encounter in nature (and have, in fact, recently been identified in experiments, see
Nano Letters 8 459 (2008), together with the small-radius tube (5,1)).