Dear Experts,
My system under study consists of a twisted bilayer MoS2 (2700 atoms) which is sandwiched by two hBN (each 722 atoms). I would like to do a optimization in this system within DFTB level of theory. Since there are no suitable parameters for Optimization, I decided to run a reactive force field calculation. I specified first single hBN layer as
tags='layer1', the twisted bilayer MoS2 as
tags='layer2', and the last hBN layer as
tags='layer3'.
The calculator and optimization in the script file is as follows:
# -------------------------------------------------------------
# Calculator
# -------------------------------------------------------------
sw_layer1 = ReaxFF_CHOSMoNiLiBFPN_2021(tags='layer1')
sw_layer2 = ReaxFF_HSMo_2017(tags='layer2')
sw_layer3 = ReaxFF_CHOSMoNiLiBFPN_2021(tags='layer3')
# Combine all 3 potential sets in a single calculator.
calculator = TremoloXCalculator(parameters=[sw_layer1, sw_layer2, sw_layer3])
bulk_configuration.setCalculator(calculator)
bulk_configuration.update()
nlsave('hBN-MoS2-hBN.hdf5', bulk_configuration)
# -------------------------------------------------------------
# Optimize Geometry
# -------------------------------------------------------------
bulk_configuration = OptimizeGeometry(
bulk_configuration,
max_forces=0.01*eV/Ang,
max_stress=0.1*GPa,
max_steps=400,
max_step_length=0.2*Ang,
trajectory_filename='hBN-MoS2-hBN_trajectory.hdf5',
trajectory_interval=1.0*Minute,
restart_strategy=RestartFromTrajectory(),
optimizer_method=LBFGS(),
enable_optimization_stop_file=True,
)
nlsave('hBN-MoS2-hBN.hdf5', bulk_configuration)
nlprint(bulk_configuration)
But the job ran into this error:
Traceback (most recent call last):
File "hBN-MoS2-hBN.tags.py", line 3495, in <module>
sw_layer1 = ReaxFF_CHOSMoNiLiBFPN_2021(tags='layer1')
File "build/lib/python3.8/site-packages/tremolox/TremoloXReaxFF.py", line 2740, in __init__
File "build/lib/python3.8/site-packages/tremolox/TremoloXPotentialSet.py", line 24513, in setTags
File "build/lib/python3.8/site-packages/tremolox/TremoloXPotentialSet.py", line 24430, in actOnlyOnTaggedRegion
File "build/lib/python3.8/site-packages/tremolox/TremoloXPotentialSet.py", line 9759, in _limitToOneTag
RuntimeError: The ReaxFF potential does not support the usage of tags!
application called MPI_Abort(MPI_COMM_WORLD, 1) - process 14
Traceback (most recent call last):
File "hBN-MoS2-hBN.tags.py", line 3495, in <module>
sw_layer1 = ReaxFF_CHOSMoNiLiBFPN_2021(tags='layer1')
File "build/lib/python3.8/site-packages/tremolox/TremoloXReaxFF.py", line 2740, in __init__
File "build/lib/python3.8/site-packages/tremolox/TremoloXPotentialSet.py", line 24513, in setTags
File "build/lib/python3.8/site-packages/tremolox/TremoloXPotentialSet.py", line 24430, in actOnlyOnTaggedRegion
File "build/lib/python3.8/site-packages/tremolox/TremoloXPotentialSet.py", line 9759, in _limitToOneTag
RuntimeError: The ReaxFF potential does not support the usage of tags!
application called MPI_Abort(MPI_COMM_WORLD, 1) - process 15
slurmstepd: error: task_p_post_term: rmdir(/dev/cpuset/slurm21924163/slurm21924163.4294967294_0) failed Device or resource busy
where the most important part tells
The ReaxFF potential does not support the usage of tags!
I also have plan to use the recent and beautiful feature in qatk, Machine-learned FF. But as the reference I need dftb parameter for Mo and S. For the electronic calculation I am using the parameters by DOI: 10.1021/ct4004959, but these parameters do not contain the repulsion potential. So, optimization is not possible. I need to find a way whether with combining two ReaxFF or using machine-learned FF.
Any suggestions are appreciated,
Cheers, A