Dear all
I have atk+vnl version 2008.10
When I try to calculate transmission spectrum than following error appears:
Traceback (most recent call last):
File "c:/users/nano/appdata/local/temp/tmpf_6irn.nl", line 419, in ?
runtime_parameters = runtime_parameters
ATKError: Exceeded maximum number of self-consistent iterations.
Terminated Abnormally
My script is following
from ATK.TwoProbe import *
from ATK.MPI import processIsMaster
# Generate time stamp
if processIsMaster():
import platform, time
print '#',time.ctime()
print '#',platform.node(),platform.platform()+'\n'
# Opening vnlfile
if processIsMaster(): file = VNLFile('C:/Users/Nano/Desktop/Abshiek_Pt_Project/apt2.vnl')
# Scattering elements and coordinates
scattering_elements = [Platinum, Platinum, Platinum, Carbon,
Carbon, Platinum, Platinum]
scattering_coordinates = [[ 0.00000000e+00, 0.00000000e+00, 7.84800005e+00],
[ 1.38734353e+00, 1.38734353e+00, 9.81000042e+00],
[ 0.00000000e+00, 0.00000000e+00, 1.17720003e+01],
[ -2.77555756e-17, -4.68440608e-17, 1.37299532e+01],
[ 2.77555756e-17, 4.68440608e-17, 1.52600468e+01],
[ 0.00000000e+00, 0.00000000e+00, 1.72219995e+01],
[ 1.38734353e+00, 1.38734353e+00, 1.91839996e+01]]*Angstrom
electrode_elements = [Platinum, Platinum, Platinum, Platinum]
electrode_coordinates = [[ 0. , 0. , 0. ],
[ 1.3873435, 1.3873435, 1.962 ],
[ 0. , 0. , 3.924 ],
[ 1.3873435, 1.3873435, 5.886 ]]*Angstrom
electrode_cell = [[ 2.77468701, 0. , 0. ],
[ 0. , 2.77468701, 0. ],
[ 0. , 0. , 7.848 ]]*Angstrom
# Set up electrodes
electrode_configuration = PeriodicAtomConfiguration(
electrode_cell,
electrode_elements,
electrode_coordinates
)
# Set up two-probe configuration
twoprobe_configuration = TwoProbeConfiguration(
(electrode_configuration,electrode_configuration),
scattering_elements,
scattering_coordinates,
electrode_repetitions=[[1,1],[1,1]],
equivalent_atoms=([0,0],[3,6])
)
if processIsMaster(): nlPrint(twoprobe_configuration)
if processIsMaster(): file.addToSample(twoprobe_configuration, 'twoprobe_configuration')
######################################################################
# Central region parameters
######################################################################
exchange_correlation_type = LDA.PZ
iteration_mixing_parameters = iterationMixingParameters(
algorithm = IterationMixing.Pulay,
diagonal_mixing_parameter = 0.05,
quantity = IterationMixing.Hamiltonian,
history_steps = 6
)
electron_density_parameters = electronDensityParameters(
mesh_cutoff = 200.0*Rydberg
)
basis_set_parameters = basisSetParameters(
type = SingleZetaPolarized,
radial_sampling_dr = 0.001*Bohr,
energy_shift = 0.01*Rydberg,
delta_rinn = 0.8,
v0 = 40.0*Rydberg,
charge = 0.0,
split_norm = 0.15
)
iteration_control_parameters = iterationControlParameters(
tolerance = 1e-005,
criterion = IterationControl.TotalEnergy,
max_steps = 100
)
electrode_voltages = (-0.1,0.1)*Volt
two_probe_algorithm_parameters = twoProbeAlgorithmParameters(
electrode_constraint = ElectrodeConstraints.Off,
initial_density_type = InitialDensityType.EquivalentBulk
)
energy_contour_integral_parameters = energyContourIntegralParameters(
circle_points = 30,
integral_lower_bound = 3*Rydberg,
fermi_line_points = 10,
fermi_function_poles = 4,
real_axis_infinitesimal = 0.01*electronVolt,
real_axis_point_density = 0.02*electronVolt
)
two_center_integral_parameters = twoCenterIntegralParameters(
cutoff = 2500.0*Rydberg,
points = 1024
)
######################################################################
# Left electrode parameters
######################################################################
left_electrode_electron_density_parameters = electronDensityParameters(
mesh_cutoff = 200.0*Rydberg
)
left_electrode_iteration_control_parameters = iterationControlParameters(
tolerance = 1e-005,
criterion = IterationControl.TotalEnergy,
max_steps = 100
)
left_electrode_brillouin_zone_integration_parameters = brillouinZoneIntegrationParameters(
monkhorst_pack_parameters = (2, 2, 100)
)
left_electrode_iteration_mixing_parameters = iterationMixingParameters(
algorithm = IterationMixing.Pulay,
diagonal_mixing_parameter = 0.05,
quantity = IterationMixing.Hamiltonian,
history_steps = 6
)
left_electrode_eigenstate_occupation_parameters = eigenstateOccupationParameters(
temperature = 1000.0*Kelvin
)
######################################################################
# Collect left electrode parameters
######################################################################
left_electrode_parameters = ElectrodeParameters(
brillouin_zone_integration_parameters = left_electrode_brillouin_zone_integration_parameters,
electron_density_parameters = left_electrode_electron_density_parameters,
eigenstate_occupation_parameters = left_electrode_eigenstate_occupation_parameters,
iteration_mixing_parameters = left_electrode_iteration_mixing_parameters,
iteration_control_parameters = left_electrode_iteration_control_parameters
)
######################################################################
# Right electrode parameters
######################################################################
right_electrode_electron_density_parameters = electronDensityParameters(
mesh_cutoff = 200.0*Rydberg
)
right_electrode_iteration_control_parameters = iterationControlParameters(
tolerance = 1e-005,
criterion = IterationControl.TotalEnergy,
max_steps = 100
)
right_electrode_brillouin_zone_integration_parameters = brillouinZoneIntegrationParameters(
monkhorst_pack_parameters = (2, 2, 100)
)
right_electrode_iteration_mixing_parameters = iterationMixingParameters(
algorithm = IterationMixing.Pulay,
diagonal_mixing_parameter = 0.05,
quantity = IterationMixing.Hamiltonian,
history_steps = 6
)
right_electrode_eigenstate_occupation_parameters = eigenstateOccupationParameters(
temperature = 1000.0*Kelvin
)
######################################################################
# Collect right electrode parameters
######################################################################
right_electrode_parameters = ElectrodeParameters(
brillouin_zone_integration_parameters = right_electrode_brillouin_zone_integration_parameters,
electron_density_parameters = right_electrode_electron_density_parameters,
eigenstate_occupation_parameters = right_electrode_eigenstate_occupation_parameters,
iteration_mixing_parameters = right_electrode_iteration_mixing_parameters,
iteration_control_parameters = right_electrode_iteration_control_parameters
)
######################################################################
# Initialize self-consistent field calculation
######################################################################
two_probe_method = TwoProbeMethod(
electrode_parameters = (left_electrode_parameters,right_electrode_parameters),
exchange_correlation_type = exchange_correlation_type,
iteration_mixing_parameters = iteration_mixing_parameters,
electron_density_parameters = electron_density_parameters,
basis_set_parameters = basis_set_parameters,
iteration_control_parameters = iteration_control_parameters,
energy_contour_integral_parameters = energy_contour_integral_parameters,
two_center_integral_parameters = two_center_integral_parameters,
electrode_voltages = electrode_voltages,
algorithm_parameters = two_probe_algorithm_parameters
)
if processIsMaster(): nlPrint(two_probe_method)
runtime_parameters = runtimeParameters(
verbosity_level = 10,
checkpoint_filename = 'C:/Users/Nano/Desktop/Abshiek_Pt_Project/apt2.nc'
)
# Perform self-consistent field calculation
scf = executeSelfConsistentCalculation(
twoprobe_configuration,
two_probe_method,
runtime_parameters = runtime_parameters
)
######################################################################
# Calculate physical properties
######################################################################
transmission_spectrum = calculateTransmissionSpectrum(
self_consistent_calculation = scf,
energies = (0.0,)*electronVolt,
brillouin_zone_integration_parameters = brillouinZoneIntegrationParameters((1, 1)),
green_function_infinitesimal = 1.0e-5*electronVolt
)
if processIsMaster(): nlPrint(transmission_spectrum)
if processIsMaster(): file.addToSample(transmission_spectrum, 'twoprobe_configuration', 'Transmission Spectrum')
current = calculateCurrent(
self_consistent_calculation = scf,
brillouin_zone_integration_parameters = brillouinZoneIntegrationParameters((1, 1)),
green_function_infinitesimal = 1.0e-5*electronVolt,
number_of_points = 100
)
if processIsMaster(): nlPrint(current)
if processIsMaster(): file.addToSample(current, 'twoprobe_configuration', 'Current')
# Set verbosity level so that all energy components are printed
import ATK
verbosity_level=ATK.verbosityLevel()
ATK.setVerbosityLevel(10)
total_energy = calculateTotalEnergy(self_consistent_calculation = scf)
ATK.setVerbosityLevel(verbosity_level)
if processIsMaster(): nlPrint(total_energy,'Total energy')
if processIsMaster(): file.addToSample(total_energy, 'twoprobe_configuration', 'Total energy')
transmission_eigenstates = calculateTransmissionEigenstates(
self_consistent_calculation = scf,
energy = 0.0*electronVolt,
quantum_numbers = (0,((0.0,0.0),(0.5,0.5)))
)
for state_index,state in enumerate(transmission_eigenstates):
label='Transmission Eigenstates'+' '+str(state_index)
if processIsMaster(): file.addToSample(state, 'twoprobe_configuration', label)
help me to solve this error