Author Topic: projection  (Read 3188 times)

0 Members and 1 Guest are viewing this topic.

Offline bubble

  • Heavy QuantumATK user
  • ***
  • Posts: 59
  • Country: cn
  • Reputation: 0
    • View Profile
projection
« on: July 21, 2017, 08:07 »
Hi,
   In ATK2017, is it possible to obtain the projected DOS more accurately? For example, to my knowledge, the old ATK only provides the d-states as a whole for projected DOS, in the new version the d-states projected DOS can be further divided into dxy, dyz, dzx...?

Offline Anders Blom

  • QuantumATK Staff
  • Supreme QuantumATK Wizard
  • *****
  • Posts: 5576
  • Country: dk
  • Reputation: 96
    • View Profile
    • QuantumATK at Synopsys
Re: projection
« Reply #1 on: July 21, 2017, 08:20 »
Yes

Offline bubble

  • Heavy QuantumATK user
  • ***
  • Posts: 59
  • Country: cn
  • Reputation: 0
    • View Profile
Re: projection
« Reply #2 on: July 21, 2017, 09:24 »
Thank you for your reply.

In the 'projection' key word, I see a choice named 'm-quantum-number'. However, I dont know whether it is the one that I want. It is well known that  in a atom, take d orbitals as an example, the d orbitals that m=-2, -1, 0, 1, 2 do NOT directly corresponds to the commonly used dxy, dyz, dzx... Usually there is a simple transformation between these two sets of orbital. Therefore, My question is, which kind of orbital is the ATK provided?

 
« Last Edit: July 21, 2017, 09:27 by bubble »

Offline Anders Blom

  • QuantumATK Staff
  • Supreme QuantumATK Wizard
  • *****
  • Posts: 5576
  • Country: dk
  • Reputation: 96
    • View Profile
    • QuantumATK at Synopsys
Re: projection
« Reply #3 on: July 21, 2017, 19:22 »
ATK uses solid harmonics, not spherical ones. The mapping, straight from the source code, is

SolidHarmonicsProperties = {
   (0,0)  : 's',
   (1,-1) : 'y',
   (1,0 ) : 'z',
   (1,1)  : 'x',
   (2,-2) : 'xy',
   (2,-1) : 'zy',
   (2,0)  : 'zz-rr',
   (2,1)  : 'zx',
   (2,2)  : 'xx-yy',
   (3,-3) : 'f(-3)',
   (3,-2) : 'f(-2)',
   (3,-1) : 'f(-1)',
   (3,0)  : 'f(0)',
   (3,1)  : 'f(1)',
   (3,2)  : 'f(2)',
   (3,3)  : 'f(3)',
   (4,-4) : 'g(-4)',
   (4,-3) : 'g(-3)',
   (4,-2) : 'g(-2)',
   (4,-1) : 'g(-1)',
   (4,0)  : 'g(0)',
   (4,1)  : 'g(1)',
   (4,2)  : 'g(2)',
   (4,3)  : 'g(3)',
   (4,4)  : 'g(4)',
}

where the first index is the "l" quantum number and the second "m".